Copied to
clipboard

G = D6.S32order 432 = 24·33

2nd non-split extension by D6 of S32 acting via S32/C3xS3=C2

metabelian, supersoluble, monomial

Aliases: D6.2S32, Dic3.9S32, C3:D12:7S3, (S3xDic3):5S3, (S3xC6).20D6, C6.D6:2S3, C33:2(C4oD4), C33:9D4:3C2, C33:6D4:3C2, C33:4Q8:3C2, C3:Dic3.18D6, C3:1(D12:5S3), C3:2(D6.D6), C3:2(D6.3D6), C32:7(C4oD12), (C3xDic3).10D6, C32:8(D4:2S3), (C32xC6).14C23, C33:5C4.3C22, (C32xDic3).20C22, C2.14S33, C6.14(C2xS32), (C3xS3xDic3):2C2, (Dic3xC3:S3):8C2, (C2xC3:S3).32D6, (S3xC3xC6).5C22, (C3xC3:D12):5C2, (C3xC6.D6):2C2, (C6xC3:S3).19C22, (C3xC6).63(C22xS3), (C3xC3:Dic3).6C22, SmallGroup(432,607)

Series: Derived Chief Lower central Upper central

C1C32xC6 — D6.S32
C1C3C32C33C32xC6S3xC3xC6C3xS3xDic3 — D6.S32
C33C32xC6 — D6.S32
C1C2

Generators and relations for D6.S32
 G = < a,b,c,d,e | a3=b12=c2=d3=e2=1, bab-1=cac=eae=a-1, ad=da, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 1156 in 210 conjugacy classes, 46 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C32, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C33, C3xDic3, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C62, C4oD12, D4:2S3, S3xC32, C3xC3:S3, C32xC6, S3xDic3, S3xDic3, C6.D6, D6:S3, C3:D12, C3:D12, C32:2Q8, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C32:4Q8, C4xC3:S3, C32:7D4, C32xDic3, C3xC3:Dic3, C33:5C4, S3xC3xC6, C6xC3:S3, D12:5S3, D6.D6, D6.3D6, C3xS3xDic3, C3xC6.D6, C3xC3:D12, Dic3xC3:S3, C33:6D4, C33:4Q8, C33:9D4, D6.S32
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C22xS3, S32, C4oD12, D4:2S3, C2xS32, D12:5S3, D6.D6, D6.3D6, S33, D6.S32

Smallest permutation representation of D6.S32
On 48 points
Generators in S48
(1 5 9)(2 10 6)(3 7 11)(4 12 8)(13 17 21)(14 22 18)(15 19 23)(16 24 20)(25 29 33)(26 34 30)(27 31 35)(28 36 32)(37 45 41)(38 42 46)(39 47 43)(40 44 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 36)(11 35)(12 34)(13 40)(14 39)(15 38)(16 37)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)

G:=sub<Sym(48)| (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,45,41)(38,42,46)(39,47,43)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)>;

G:=Group( (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,29,33)(26,34,30)(27,31,35)(28,36,32)(37,45,41)(38,42,46)(39,47,43)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48) );

G=PermutationGroup([[(1,5,9),(2,10,6),(3,7,11),(4,12,8),(13,17,21),(14,22,18),(15,19,23),(16,24,20),(25,29,33),(26,34,30),(27,31,35),(28,36,32),(37,45,41),(38,42,46),(39,47,43),(40,44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,36),(11,35),(12,34),(13,40),(14,39),(15,38),(16,37),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)]])

45 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F3G4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O12A···12F12G···12K12L12M
order1222233333334444466666666666666612···1212···121212
size1161818222444833618542224446681212121818366···612···121818

45 irreducible representations

dim11111111222222222444444488
type+++++++++++++++++-+-+-
imageC1C2C2C2C2C2C2C2S3S3S3D6D6D6D6C4oD4C4oD12S32S32D4:2S3C2xS32D12:5S3D6.D6D6.3D6S33D6.S32
kernelD6.S32C3xS3xDic3C3xC6.D6C3xC3:D12Dic3xC3:S3C33:6D4C33:4Q8C33:9D4S3xDic3C6.D6C3:D12C3xDic3C3:Dic3S3xC6C2xC3:S3C33C32Dic3D6C32C6C3C3C3C2C1
# reps11111111111412228211322211

Matrix representation of D6.S32 in GL8(F13)

10000000
01000000
00100000
00010000
00001000
00000100
00000001
0000001212
,
80000000
05000000
00110000
001200000
000012000
000001200
00000010
0000001212
,
05000000
80000000
00110000
000120000
00001000
00000100
000000120
00000011
,
10000000
01000000
00100000
00010000
000012100
000012000
00000010
00000001
,
120000000
01000000
001200000
000120000
00000100
00001000
00000010
0000001212

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;

D6.S32 in GAP, Magma, Sage, TeX

D_6.S_3^2
% in TeX

G:=Group("D6.S3^2");
// GroupNames label

G:=SmallGroup(432,607);
// by ID

G=gap.SmallGroup(432,607);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,58,298,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=e^2=1,b*a*b^-1=c*a*c=e*a*e=a^-1,a*d=d*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<